
1

Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

Illustrations by Edith Sher
Copyright © 2001 Maxkab Solutions CC – All Rights Reserved

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

2

Dr. Heinz Kabutz
• Professional Java Programmer
• Did PhD in Computer Science at the

University of Cape Town, South Africa
• Trainer of Java and Design Patterns

Courses in various places of the world
• Publish The Java Specialists’

Newsletter
– Only publication of its kind
– Sent to over 100 countries
– Archive on http://

www.javaspecialists.co.za

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

3

Questions
• Please please please please ask questions!
• There are some stupid questions

– They are the ones you didn’t ask
– Once you’ve asked them, they are not stupid

anymore
• Assume that if you didn’t understand

something that it was my fault
• The more you ask, the more everyone

learns (including me)

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

4

Structure of Talk
• Software Engineering

– as it happens in the software factories
• How Design Patterns fit in
• Proxy Design Patterns

– Demonstration: Virtual and security proxies with
Java dynamic proxies

• Singleton Misunderstood (time permitting)
– Common misconceptions with Singleton

• Discussion time

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

5

1. Software Engineering
• Why do companies want experience?
• What experience is most valuable?
• Experience in which language will guarantee

you a job?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

6

Classic Methodologies
• e.g. Waterfall Model: Analysis, Design,

Implementation, Testing
• Suffered from “Analysis Paralysis”
• Bad decision during analysis very expensive
• Nice model for large teams with greatly

varying skill-sets
• Each iteration takes months

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

7

Agile Methodologies
• e.g. eXtreme Programming
• All programming is done in pairs

– For constant code reviewing, NOT mentoring
• Very short iterations (days or even hours)
• Testing is done several times a day
• Daily automated build and complete test
• Designing with Patterns
• Ruthless refactoring

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

8

Which Methodology to Use?
• Waterfall Model

– One or two excellent analysts
– Few good designers
– Lots of average programmers
– Suffers from “Peter Principle”

• eXtreme Programming
– Between 6 and 12 above average programmers

per team
– Fosters cooperation, not competition in team
– Low staff turnover
– Chaos if not strictly managed!!!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

9

Typical Day as Programmer
08:00 Arrive at work
08:30 Had first cup of coffee, erased SPAM
09:00 Chatted with coworker about soccer
10:00 Had project status meeting
11:00 Thought about design problems

 (Whilst playing minesweeper)
12:30 Looked at some critical bugs for important customer
13:30 Finished playing “Battlefield 1942” with colleagues
15:00 Wrote 200 lines of VB code, answered 5 phone calls
16:30 Company meeting entitled “Be more productive”
17:30 Wrote emails to bosses and colleagues (and

friends)
23:30 Time to go home – finished writing TCP/IP stack in

assembler

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

10

Programming is a Minority Task
• Most of your time is spent in:

– Meetings
– Documentation
– Planning
– Testing, bug fixing & support
– Email

• Even brilliant programmers have to
communicate!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

11

Design Language can Help
• Meetings

– Communicate more effectively about your
designs to colleagues

• Documentation
– Code documentation can refer to Design Pattern

• Planning
– You can talk in higher-level components

• Testing, bug fixing & support
– Better designs will reduce bugs and make code

easier to change

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

12

2: Introduction to Patterns

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

13

Vintage Wines
• Design Patterns are like good red wine

– You cannot appreciate them at first
– As you study them you learn the difference

between table wine and vintage
– As you become a connoisseur you experience

the various textures you didn’t notice before
• Warning: Once you are hooked,

you will no longer be happy
with plain table wine!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

14

Why are patterns so important?
• Provide a view into the brains

of OO experts
• Help you understand existing

designs
• Patterns in Java, Volume 1,

Mark Grand writes
– "What makes a bright, experienced programmer

much more productive than a bright, but
inexperienced, programmer is experience."

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

15

Design Patterns Origin
The Timeless Way of Building

Christopher Alexander
 There is a central quality which is the root

criterion of life and spirit in a man, a
town, a building, or a wilderness.

 If you want to make a living
flower, you don’t build it

physically, with tweezers,
cell by cell. You grow it

from the seed.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

16

Textbook – “Design Patterns”
• “Design Patterns” book by

Gang of Four (GoF)
• Contains a collection of

basic “patterns” that
experienced OO developers use regularly

• Cannot proceed very far in Java, C#,
VB.NET without understanding patterns

• Facilitates better communication
• Based on work of renegade architect

Christopher Alexander in “The Timeless Way
of Building”

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

17

What’s in a name?
The Timeless Way of Building

The search for a name is a fundamental
part of the process of inventing or

discovering a pattern.
So long as a pattern has a weak name, it
means that it is not a clear concept, and

you cannot tell me to make “one”.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

18

Why do we need a diagram?
The Timeless Way of Building

If you can’t draw a [class] diagram of it, it
isn’t a pattern

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

19

Misuse of Design Patterns
• Patterns Misapplied

– “design” patterns should not be used during
analysis

• Cookie Cutter Patterns
– patterns are generalised solutions

• Misuse By Omission
– reinventing a crooked wheel

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

20

Summary
• Object Orientation is here to stay
• Design Patterns will fast-track you in

learning how to design with objects

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

21

3: Proxy

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

22

Proxy
• Intent

– Provide a surrogate or placeholder for another
object to control access to it.

• Also known as
– Surrogate

23

Motivation: Proxy

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

24

FTPServer interface
• Defines a common method “getFile”

import java.net.URL;
import java.io.*;

public interface FTPServer {
 public InputStream getFile(URL url)
 throws IOException;
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

25

RealFTPServer
• Reading a file across the network
• Implements

FTPServer
interface

import java.net.*;
import java.io.*;

public class RealFTPServer implements FTPServer {
 public InputStream getFile(URL url)
 throws IOException {
 System.out.println(
 "Getting file from real FTP Server");
 return url.openStream();
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

26

FTPServerProxy
• Fetches files from RealFTPServer and writes

them to disk with ShadowInputStream
• Next time the same file is requested it is

returned directly
from the disk

• Speeds up file
retrieval

27

import java.util.*;
import java.io.*;
public class FTPServerProxy implements FTPServer {
 private static long cacheID = 0;
 private HashMap cache = new HashMap();
 private RealFTPServer realServer =
 new RealFTPServer();

 // write file to local disk as it gets read
 public InputStream getFile(java.net.URL url)
 throws IOException {
 if (cache.containsKey(url)) {
 System.out.println("Getting file from cache");
 return new FileInputStream(
 (String)cache.get(url));
 }

 String filename = cacheID++ + ".cache";
 cache.put(url, filename);
 return new ShadowInputStream(
 realServer.getFile(url),
 new FileOutputStream(filename));
 }

28

// Copies the bytes read from the InputStream to the
// specified OutputStream
class ShadowInputStream extends FilterInputStream {
 private final OutputStream out;
 public ShadowInputStream(InputStream in,
 OutputStream out) {
 super(in);
 this.out = out;
 }

 public int read() throws IOException {
 int result = super.read();
 if (result != -1) out.write(result);
 return result;
 }
 public int read(byte[] buf, int offset, int length)
 throws IOException {
 int result = super.read(buf, offset, length);
 if (result != -1) out.write(buf, offset, result);
 return result;
 }

29

 public void close() throws IOException {
 super.close();
 out.close();
 }
 } // end of class ShadowInputStream
} // end of class FTPServerProxy

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

30

Not Robust Enough
• There should be a facility for deleting older

files
• Partial reads should be resumed
• Can’t handle simultaneous connections for

some URL
• Versions of URLs
• Code was kept “simple”

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

31

Applicability: Proxy
• Virtual Proxy

– creates expensive objects on demand
• Remote Proxy

– provides a local representation for an object in a
different address space

• Protection Proxy
– controls access to original object

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

32

Structure: Proxy

33

Remote Proxy

34

public interface Company {
 int getNumberOfEmployees();
 void addEmployee(String name);
}

// The “RealCompany” would typically be an object
// contained by an EJB container or RMI server
import java.util.*;
public class RealCompany implements Company {
 private List employees = new ArrayList();
 public int getNumberOfEmployees() {
 return employees.size();
 }
 public void addEmployee(String name) {
 employees.add(name);
 }
}

35

public class CompanyProxy implements Company {
 // various data members for network comms
 public int getNumberOfEmployees() {
 // send a message over the network to fetch
 // the value from the RealCompany class
 // sitting on the server
 }

 public void addEmployee(String name) {
 // send a message over the network to create
 // an employee in the remote company
 }
 // etc.
}

36

public class CompanyTest {
 public static void main(String[] args)
 throws java.io.IOException {
 Company company = new CompanyProxy();
 company.addEmployee("John Smith");
 System.out.println("Now there are " +
 company.getNumberOfEmployees() +
 " employees");
 }
}

Our client code can talk to the Company as
if it were a local object

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

37

Consequences: Proxy
• Introduces level of indirection when

accessing an object
– A remote proxy can hide the fact that an object

resides in a different address space
– A virtual proxy can perform optimizations such as

creating an object on demand
• The proxy and the real subject are objects of

different types
– Make sure equals(Object) caters for this!

• Another optimization is copy-on-write
– e.g. java.lang.StringBuffer

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

38

Known Uses in Java: Proxy
• Remote proxies created transparently by

rmic tool for Remote Method Invocation
(RMI) mechanism

• EJB deployment tools call rmic
transparently

• JDK 1.3 has support for dynamic proxies
– Can add a proxy to a live object
– Covered in “The Java™ Specialists’ Newsletter”

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

39

Questions: Proxy
• You have designed a Java server that

connects to a database. If several clients
connect to your server at once, how could
Proxies be of help?

• If a Proxy is used to control access to
another object, does the Proxy simplify
code?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

40

Exercises: Proxy
• Consider the following Employee

classes. Write a SecureEmployee
class which implements the Employee
interface, but checks that the
SecurityManager allows access to
salaries. Test it against the
EmployeeTest class.

public interface Employee { // the Subject
 /**@throws SecurityException if access denied */
 double getSalary();
}
public class RealEmployee implements Employee {
 public double getSalary() {
 return 321444.22;
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

41

Exercises: Proxy
public class SecurityManager {
 private static boolean salary;
 public static void setSalaryPermission(
 boolean val) {salary = val;}
 public static void checkSalaryPermission() {
 if (!salary) throw new SecurityException();
 }
}
public class EmployeeTest {
 public static void main(String[] args) {
 Employee maxi = new SecureEmployee(
 new RealEmployee());
 SecurityManager.setSalaryPermission(true);
 System.out.println(maxi.getSalary());
 SecurityManager.setSalaryPermission(false);
 System.out.println(maxi.getSalary());
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

42

4. Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

43

Singleton
• Intent

– Ensure a class only
has one instance, and
provide a global point
of access to it.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

44

Motivation: Singleton
• It’s important for some classes to have

exactly one instance, e.g. SecurityModule

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

45

Sample Code: Singleton
public class SecurityModule {
 private static SecurityModule instance =
 new SecurityModule();

 public static SecurityModule getInstance() {
 return instance;
 }

 private SecurityModule() {
 loadPasswords();
 }

 public UserContext login(String username,
 String password) {
 return new UserContext(username, password);
 }

 // etc.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

46

Applicability: Singleton
• Use the Singleton pattern when

– there must be exactly one instance of a class,
and it must be accessible to clients from a well-
known access point.

– when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

47

Structure: Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

48

Consequences: Singleton
• Benefits

– Controlled access to sole instance
– Reduced name space
– Permits refinement of operations and

representation
– Permits a variable number of instances
– More flexible than class operations

• Drawbacks
– Overuse can make a system less OO.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

49

Known Uses in Java: Singleton
• java.lang.Runtime.getRuntime()
• java.awt.Toolkit.getDefaultToolkit()

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

50

Questions: Singleton
• The pattern for Singleton uses a private

constructor, thus preventing extendability.
What issues should you consider if you want
to make the Singleton “polymorphic”?

• Sometimes a Singleton needs to be set up
with certain data, such as filename,
database URL, etc. How would you do this,
and what are the issues involved?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

51

Exercises: Singleton
• Turn the following class into a

Singleton:

public class Earth {
 public static void spin() {}
 public static void warmUp() {}
}

public class EarthTest {
 public static void main(String[] args) {
 Earth.spin();
 Earth.warmUp();
 }
}

• Now change it to be extendible

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

52

5. Conclusion
• Software Engineering is essential for

developing solid programs
• Architecture, Design, Performance all play a

part

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

53

6. Some Thoughts
• Greece

– Full member of the European Union
– You can work in Germany, France, Netherlands,

Belgium
• Entrepreneurship

– Would you like to become a space tourist?
• (Cost $ 20,000,000 for one flight)

– Young means small expenses
– Don’t work for someone – start your own

companies!
• Develop good products sold internationally

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

54

Body Shops
• Hundreds of underpaid programmers

developing software for USA Germany UK
• Eastern Europe very cheap

– $10 per hour
• India Wipro has 10,000 Java developers!
• Intel Science & Engineering Fair

– Largest pre-university science competition
– America: 65,000
– China: 6,000,000

• Greece cannot compete at that level!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

55

Innovation, Innovation
• Develop own ideas
• Start own companies
• Write the products, market them, sell them
• No one needs to know where software was

produced
– And no one cares either

• E.g. Thawte Consulting
– Started in parent’s garage, sold for $600,000,000

• E.g. The Java™ Specialists’ Newsletter
– Reaching over 100 countries!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

56

Crete
• Crete is an excellent base from which to

work
• Sunshine, beauty, friendly people
• Good quality of life
• Close to everywhere in Europe
• Access to internet
• Expenses low

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

57

Future
• We plan to move to Crete in the near future

God willing

The Java™ Specialists’
Newsletter

Produced on the beautiful island of Crete
• See you soon!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

58

Design Patterns Cape Town

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

59

Design Patterns Germany

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

60

Design Patterns London

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

61

Design Patterns
Switzerland

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

62

Design Patterns Estonia
at –18o Celsius

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

63

Design Patterns

 Mauritius 2001

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

64

Tsinghua China 2003

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

65

Austria
2005

